金龙彩票主页有限公司

智能AGV机器人与现代智能化物流应用分析

    不论是普通制造业还是码头仓库,物料装卸和搬运都是物流的要素之一,在物流系统中成本占比也很高。美国工业生产过程中装卸搬运费用占成本的20~30%,德国物流企业物料搬运费用占营业额的35%,日本物流搬运费用占10%,我国生产物流中装卸搬运费用约占加工成本的20%,所以企业一直都在最完美的自动化智能化的搬运技术和装备。AGV机器人一种柔性化和智能化物流搬运机器人,在国外从50年代在仓储业开始使用,目前已经在制造业、港口、码头等领域得到普遍应用,在国内逐渐也有部分企业重视并应用AGV来完成一些简单的搬运任务。下面我们就来简单分析智能AGV机器人与现代智能化物流应用。

  智能 AGV的种类

  AGV从发明至今已经有50年的历史,随着应用领域的扩展,其种类和形式变得多种多样。我们根据I-SO AGV自动行驶过程中的导航方式将AGV分为以下几种类型:

  1). 电磁感应引导式AGV (由于这种技术相对落后和性能缺陷,一般环境下智能 AGV很少采用)

  电磁感应式引导一般是在地面上,沿预先设定的行驶路径埋设电线,当高频电流流经导线时,导线周围产生电磁场,AGV上左右对称安装有两个电磁感应器,它们所接收的电磁信号的强度差异可以反映AGV偏离路径的程度。AGV的自动控制系统根据这种偏差来控制车辆的转向,连续的动态闭环控制能够保证AGV对设定路径的稳定自动运行。由于这种电磁感应引导式导航方法才安装施工比较繁杂无法随时更新AGV行驶路径,同时容易受到电磁环境干扰,目前部分国内AGV制造厂商仍在商业化的AGV上使用,尤其是适用于大中型的AGV。

    2). 激光引导式AGV (适合高附加值,高环境要求行业生产制造使用)

  激光引导式AGV上安装有可旋转的激光扫描器,在运行路径沿途的墙壁或支柱上安装有高反光性的定位标志,AGV依靠激光扫描器发射激光束,然后接受由四周定位标志反射回的激光束,车载计算机计算出车辆当前的位置以及运动的方向,通过和内置的数字地图进行对比来校正方位,从而实现自动搬运。

  目前激光引导式AGV的应用范围普遍,并且依据同样的引导原理,若将激光扫描器更换为红外发射器或超声波发射器,则激光引导式AGV可以变为红外引导式AGV和超声波引导式AGV。 激光引导式AGV成本较高,在普通制造业较少推荐,适合生化制药,烟草,芯片等高附加值行业使用。

  3). 视觉引导式AGV (全力研发中….)

  视觉引导式AGV 是我们正在快速发展和成熟的AGV,该AGV上装有CCD摄像机和传感器,在车载计算机中设置有AGV欲行驶路径周围环境图像数据库。AGV行驶过程中摄像机动态获取车辆周围环境图像信息并与图像数据库进行比较,从而确定当前位置并对下一步行驶做出决策。 这种AGV由于不要求人为设置任何物理路径,因此在理论上具有最佳的引导柔性,随着计算机图像采集、储存和处理技术的飞速发展,能够识别物品和行人(如盘子.碗.顾客)该种AGV的实用性越来越强。
    4).磁带导引AGV (通用型,适合所有行业使用)磁带导引AGV 在工作区间地板上铺设磁带,AGV通过磁场传感器检测磁带信号控制走行,这种技术目前成本最低,施工简单可快速更改路径,不受环境影响可靠性高,可满足大部分行业要求,磁带导引AGV 在站点设置上突破了传统技术自主开发了AGV专用RFID隐藏式站标和读写器,让行驶线路设置更加柔性。
  
  此外,还有铁磁陀螺惯性引导式AGV、光学引导式AGV等多种形式的AGV。

 

 


  二 AGV的应用

  1.仓储业

  2.制造业

  3.邮局、图书馆、港口码头和机场

  4.烟草、医药、食品、化工

  5.危险场所和特种行业

  智能 AGV使用中的路线优化和实时调度的方法和研发方向:

  1. 数学规划方法 :为AGV选择最佳的任务及最佳路径,可以归纳为一个任务调度问题。数学规划方法是求解调度问题最优解的传统方法,该方法的求解过程实际上是一个资源限制下的寻优过程。实用中的方法主要有整数规划、动态规划、petri方法等。在小规模调度情况下,这类方法可以得到较好的结果,但是随着调度规模的增加,求解问题耗费的时间呈指数增长,限制了该方法在负责、大规模实时路线优化和调度中应用。

  2. 仿真方法:仿真方法通过对实际的调度环境建模,从而对AGV的一种调度方案的实施进行计算机的模拟仿真。我们使用仿真手段对某些调度方案进行测试、比较、监控,从而改变和挑选调度策略。实用中采用的方法有离散事件仿真方法、面向对象的仿真方法和3维仿真技术,有许多软件可以用于AGV的调度仿真,其中Witness软件可以快速建立仿真模型,实现仿真过程三维演示和结果的分析处理。

  3. 人工智能方法:人工智能方法把AGV的调度过程描述成一个在满足约束的解集搜索最优解的过程。它利用知识表示技术将人的知识包括进去,同时使用各种搜索技术力求给出一个令人满意的解。具体的方法有专家系统方法、遗传算法、启发式算法、神经网络算法。其中专家系统方法在实用中较多采用,它将调度专家的经验抽象成系统可以理解和执行的调度规则,并且采用冲突消解技术来解决大规模AGV调度中的规则膨胀和冲突问题。

  由于神经网络具有并行运算、知识分布存储、自适应性强等优点,因此,它成为求解大规模AGV调度问题是一个很有希望的方法。目前,用神经网络方法成功的求解了TSP-NP问题,求解中,神经网络能把组合优化问题的解转换成一种离散动力学系统的能量函数,通过使能量函数达到最小而求得优化问题的解。

  遗传算法是模拟自然界生物进化过程中的遗传和变异而形成的一种优化求解方法。遗传算法在求解AGV的优化调度问题时,首先通过编码将一定数量的可能调度方案表示成适当的染色体,并计算每个染色体的适应度(如运行路径最短),通过重复进行复制、交叉、变异寻找适应度大的染色体,即AGV调度问题的最优解。

  单独用一种方法来求解调度问题,往往存在一定的缺陷。目前,将多种方法进行融合来求解AGV的调度问题是一个研究热点。如,将专家系统和遗传算法融合,把专家的知识融入到初始染色体群的形成中,以加快求解速度和质量。

<友情连结> 金尊彩票平台/ 88彩票注册/ 金龙彩票登录/